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Well-balanced �nite volume evolution Galerkin methods for
the shallow water equations with source terms
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SUMMARY

The goal of this paper is to present a new well-balanced genuinely multi-dimensional high-resolution
�nite volume evolution Galerkin method for systems of balance laws. The derivation of the method
will be illustrated for the shallow water equation with geometrical source term modelling the bot-
tom topography. The results can be generalized to more complex systems of balance laws. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We consider the balance law in two space dimensions

u t + f1(u)x + f2(u)y= b(u; x; y) (1)

where u stands for the vector of the conservative variables, f1; f2 are �ux functions and
b(u; x; y) is a source term. For the case of homogenous conservation laws, i.e. b(u; x; y)=0,
several high-resolution genuinely multi-dimensional schemes have been developed in the lit-
erature, see, e.g. References [1–3]. In this paper, we are concerned with the �nite volume
evolution Galerkin (FVEG) method of Luk�a�cov�a, Morton and Warnecke, cf. References [4–7].
The FVEG methods couple a �nite volume formulation with approximate evolution operators
which are based on the theory of bicharacteristics for the �rst-order systems [5]. As a result,
exact integral equations for linear or linearized hyperbolic conservation laws can be derived.
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They take all of the in�nitely many directions of wave propagation into account. For two-
dimensional conservation laws, this is realized by the integration along the sonic circle, i.e.
for a parameter �∈ [0; 2�]: Further integrals appearing in the exact integral equations are
the integrals along time, e.g. from tn to tn+1. Since the exact integral equations are implicit
in time, appropriate numerical quadratures have to be applied in time in order to approximate
integrals along the mantle of the so-called bicharacteristic cones. This yields the approximate
evolution operators that are explicit in time. In the �nite volume framework, the approxi-
mate evolution operators are used to evolve the solution along the cell interfaces in order to
compute �uxes on edges. This step can be considered as a predictor step. In the corrector
step the �nite volume update is done. In summary, the FVEG scheme is a genuinely multi-
dimensional method that is explicit in time. The error analysis of the FVEG schemes was
studied theoretically for the linearized systems of hyperbolic conservation laws in Reference
[5]. New approximate evolution operators developed in Reference [6] improved stability of
the whole �nite volume EG scheme, see also Reference [7]. It has been shown in Reference
[6] that the new FVEG scheme has not only enlarged the area of stability but it is also consid-
erably more accurate than other commonly used FV schemes. Relatively high global accuracy
of the FVEG schemes has been con�rmed in general by extensive numerical treatment in
series of papers References [4–6] for linear as well as non-linear conservation laws.
For balance laws with source terms, the simplest approach is to use the operator splitting

method which alternates between the homogenous conservation laws u t + f1(u)x + f2(u)y=0
and the ordinary di�erential equation u t = b(u; x; y) in each time step. For many situations,
this would be e�ective and successful. However, the original problem (1) has an interesting
structure, which is due to the competition between the di�erential terms and the right-hand side
source term during the time evolution. If we split a priori these terms, which are dominant
for the evolution process, numerical schemes can yield spurious solutions. In particular, the
equilibrium or stationary states, i.e. u such that

f1(u)x + f2(u)y= b(u; x; y)

cause di�culties. These equilibrium solutions usually play an important role because they are
obtained as a limit when time tends to in�nity.
In this paper, we present an approach which allows to incorporate treatment of the source

in the framework of the FVEG schemes without using the operator splitting approach. Thus,
the stationary states, or quasi-stationary states, will be approximated correctly. The scheme is
called the well-balanced �nite volume evolution Galerkin scheme; see also, e.g.
Reference [8] (cf. the C property) and Reference [9] for other related approaches in the
literature.

2. SHALLOW WATER EQUATIONS AND THE WELL-BALANCED
APPROXIMATE EVOLUTION OPERATORS

There are many practical applications where the balance laws and the correct approxi-
mation of their quasi-steady states are needed. In what follows, we illustrate the methodo-
logy on the example of the shallow water equations with the bottom topography term.
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This system reads

u t + f1(u)x + f2(u)y= b(u) (2)

where

u=



h
hu
hv


; f1(u)=




hu

hu2 + 1
2gh

2

huv


; f2(u)=




hv
huv

hv 2 + 1
2gh

2


; b(u)=




0
−ghbx
−ghby




Here h denotes the water depth, u and v are vertically averaged velocity components in
x- and y-direction, g stands for the gravitational constant and b= b(x; y) denotes the bottom
topography. It should be pointed out that for practical problems, for example the river or
oceanographic �ows, some additional terms modelling the bottom friction or the Coriolis
forces need to be considered as well. Applying the theory of bicharacteristics to (2) leads to
the integral equations in an analogous way as in Reference [5]

h(P) =
1
2�

∫ 2�

0
h(Q)− c̃

g
u(Q) cos �− c̃

g
v(Q) sin � d�

− 1
2�

∫ tn+1

tn

1
tn+1 − t̃

∫ 2�

0

c̃
g
(u(Q̃) cos �+ v(Q̃) sin �) d� dt̃

+
1
2�
c̃
∫ tn+1

tn

∫ 2�

0
(bx(Q̃) cos �+ by(Q̃) sin �) d� dt̃ (3)

u(P) =
1
2
u(Q0) +

1
2�

∫ 2�

0
−g
c̃
(h(Q) + b(Q)) cos �+ u(Q) cos2 �+ v(Q) sin � cos � d�

−1
2
g

∫ tn+1

tn
(hx(Q̃0)− bx(Q̃0)) dt̃

− 1
2�
g

∫ tn+1

tn

∫ 2�

0
(bx(Q̃) cos2 �+ by(Q̃) cos � sin �) d� dt̃

+
1
2�

∫ tn+1

tn

1
tn+1 − t̃

∫ 2�

0
(u(Q̃) cos 2�+ v(Q̃) sin 2�) d� dt̃ (4)

with an analogous equation for the second velocity component v. Here P=(x; y; tn+1) is
the pick of the bicharacteristic cone, Q0 = (x − ũ�t; y − ṽ�t; tn) denotes the centre of
the sonic circle, Q̃0 = (x − ũ(tn + �t − t̃ ); y − ṽ(tn + �t − t̃ ); t̃ ), Q̃=(x − ũ(tn + �t − t̃ ) +
c(tn+�t − t̃ ) cos �; y− ṽ(tn+�t − t̃ )+ c(tn+�t − t̃ ) sin �; t̃ ) stays for arbitrary point on the
mantle and Q=Q(t̃ )|t̃ = tn denotes a point at the perimeter of the sonic circle at time tn. The
local velocities are denoted by ũ; ṽ; c̃=

√
gh̃:
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Lemma 2.1
The well-balanced approximation of the integral equations (3), (4) reads

h(P) =−b(P) + 1
2�

∫ 2�

0
(h(Q) + b(Q))− c̃

g
u(Q) cos �− c̃

g
v(Q) sin � d�

− 1
2�

∫ tn+1

tn

1
tn+1 − t̃

∫ 2�

0

c̃
g
(u(Q̃) cos �+ v(Q̃) sin �) d� dt̃ +O(�t2) (5)

u(P) =
1
2
u(Q0) +

1
2�

∫ 2�

0
−g
c̃
(h(Q) + b(Q)) cos �+ u(Q) cos2 �+ v(Q) sin � cos � d�

− 1
2�
g
c̃

∫ tn+1

tn

1
tn+1 − t̃

∫ 2�

0
(h(Q̃) + b(Q̃)) cos � d� dt̃

+
1
2�

∫ tn+1

tn

1
tn+1 − t̃

∫ 2�

0
(u(Q̃) cos 2�+ v(Q̃) sin 2�) d� dt̃ +O(�t2) (6)

with an analogous equations for the second velocity v.

Lemma 2.1 can be proved by applying the trapezoidal rule for time integrals and the Taylor
expansion as well as the Gauss theorem on the sonic circle. Approximations (5) and (6) are
well balanced in the sense that the steady equilibrium states, i.e. u; v=0; h + b=const: are
preserved; see Reference [10] for details of the proof. An important property of the evolution
operator (5) and (6) is that the bottom elevation and the depth of the water are represented
by the same terms. The next step is to approximate appropriately the mantle integrals, i.e.
time integrals from tn to tn+1: This is done by means of the numerical quadratures which
were proposed in Reference [6] in such a way that any planar one-dimensional wave is calcu-
lated exactly. These quadratures are now used systematically for approximation of all mantle
integrals, i.e. integrals

∫ tn+1
tn

∫ 2�
0 . Following Reference [6] we get the well-balanced approxi-

mate evolution operator Econst� for piecewise constant functions

h(P) =−b(P) + 1
2�

∫ 2�

0
(h(Q) + b(Q))− c̃

g
u(Q) sgn(cos �)

− c̃
g
v(Q) sgn(sin �) d�+O(�t2)

u(P) =
1
2�

∫ 2�

0
−g
c̃
(h(Q) + b(Q)) sgn(cos �) + u(Q)

(
cos2 �+

1
2

)

+ v(Q) sin � cos � d�+O(�t2) (7)

The approximate evolution Ebilin� for bilinear functions can be derived from (5) and (6) in
an analogous way as in Reference [6].
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3. FINITE VOLUME EVOLUTION GALERKIN SCHEME

The above approximate evolution operators will now be used in the �nite volume method in
order to compute �uxes on cell interfaces. Let us consider for simplicity a regular rectangular
mesh. The �nite volume evolution Galerkin scheme for balance laws reads

Un+1 =Un − �t
�x

2∑
k=1
�xk fk(U

n+1=2) + Bn+1=2 fk(Un+1=2)=
1
h

∫
E

fk(E�t=2Un) dS (8)

where Bn+1=2 stays for the approximation of the source term, �xk fk(Un+1=2) represents an
approximation to the edge �ux di�erence at the intermediate time level tn + �t=2. The cell
interface �uxes fk(Un+1=2) are evolved using an approximate evolution operator denoted by
E�t=2 to tn +�t=2 and averaged along the cell interface edge denoted by E.
For the �rst-order scheme, the approximate evolution operator Econst�t=2 for the piecewise con-

stant data is used. For the second-order method, the continuous bilinear recovery Rh is applied
�rst. Then the predicted solution at cell interfaces is obtained in the following way:

fk(Un+1=2)=
1
h

∫
E

fk(Ebilin�t=2RhU
n + Econst�t=2 (1− �2x�2y)Un) dS (9)

where �2xUij=
1
4(Ui+1; j + 2Uij +Ui−1; j); an analogous notation is used for the y-direction.

The source term B will be approximated in the so-called interface-based way in order
to re�ect a delicate balance between the gradient of �ux functions and the right-hand side
source term for quasi-steady stationary states. In fact, we have for nearly hydrostatic �ows
that

√
u2 + v 2�√

gh. In the associated asymptotic limit, the leading order water height h
satis�es the balance of momentum �ux and momentum source terms. More precisely, we
have from the momentum equation in x-direction @x(gh2=2)= − ghbx: This is the condition
that yields the well-balanced approximation of the source term. Integrating, e.g. in the second
equation of (2), the right-hand side over the mesh cell 	ij we get

1
�x2

∫
	ij
B2(Un+1=2) =

1
�x2

∫ xi+1=2

xi−1=2

∫ yi+1=2

yi−1=2

−ghn+1=2bx

≈ −g
�x

∫ yi+1=2

yi−1=2

hn+1=2i+1=2 + h
n+1=2
i−1=2

2
bi+1=2 − bi−1=2

�x

It is easy to see that for quasi-steady stationary cases, i.e. h + b≈ const:, the latter term is
equivalent to the �ux di�erences on cell interfaces which arise from the �nite-volume update.

4. NUMERICAL EXPERIMENT

In the following experiment, we have tested the resolution of small perturbations of steady
states. The bottom topography consists of one hump

b(x)=

{
0:25(cos(10�(x − 0:5)) + 1) if |x − 0:5|¡0:1
0 otherwise
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Figure 1. Propagation of small perturbances, �=0:2 (top) and a magni�ed view for �=0:01 (bottom).

and the initial data are u(x; 0)=0,

h(x; 0)=

{
1− b(x) + � if 0:1¡x¡0:2

1− b(x) otherwise

The parameter � is chosen to be 0:2 or 0:01. The computational domain is [0; 1] and the
extrapolation boundary conditions have been used.
In Figure 1, we can see propagation of small perturbances of the water depth h until time

t=0:7. The solution is computed on a mesh with 100 cells. In the top picture, the parameter
of perturbation �=0:2 is relatively large in comparison to the discretization error. In the
bottom picture �=0:01. The solution is computed with the �rst- and the second-order FVEG
methods using the minmod and the monotonized minmod limiters. The reference solutions
were obtained by the second-order FVEG method with the minmod limiter on a mesh with
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10 000 cells. We can notice correct resolution of small perturbances of the steady state even
if the perturbances are of the order of the truncation error. Similar results have been obtained
also for two-dimensional problems.
The present research is in progress. We are currently studying the approximation of dry

states, i.e. h≈ 0, as well as other quasi-steady states where the momentums hu; hv are non-zero
constants. The behaviour of such �ow depends on the bottom topography and on the free-
stream Froude number Fr=

√
u2 + v 2=

√
gh. For intermediate Fr, the �ow can be transcritical

and the solution can contain a stationary transcritical shock.
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